如图:在多面体EF-ABCD中,四边形ABCD是平行四边形,△EAD为正三角形,且平面EAD平面ABCD,EF∥AB, AB=2EF=2AD=4,.(Ⅰ)求证:BFAD;(Ⅱ)求直线BD与平面BCF所成角的大小.
已知箱子里装有4张大小、形状都相同的卡片,标号分别为1,2,3,4. (1)从箱子中任取两张卡片,求两张卡片的标号之和不小于5的概率; (2)从箱子中任意取出一张卡片,记下它的标号,然后再放回箱子中;第二次再从箱子中任取一张卡片,记下它的标号,求使得幂函数图像关于轴对称的概率.
已知 (1)最小正周期及对称轴方程; (2)已知锐角的内角的对边分别为,且 ,,求边上的高的最大值.
设,曲线在点处的切线与直线垂直. (1)求的值; (2)若对于任意的,恒成立,求的范围; (3)求证:
如图,分别过椭圆:左右焦点、的动直线相交于点,与椭圆分别交于不同四点,直线的斜率、、、满足.已知当轴重合时,,. (1)求椭圆的方程; (2)是否存在定点,使得为定值.若存在,求出点坐标并求出此定值,若不存在,说明理由.
数列的前n项和记为点在直线上,.(1)若数列是等比数列,求实数的值; (2)设各项均不为0的数列中,所有满足的整数的个数称为这个数列的“积异号数”,令(),在(1)的条件下,求数列的“积异号数”