已知双曲线实轴在轴,且实轴长为2,离心率, L是过定点的直线.(1)求双曲线的标准方程;(2)判断L能否与双曲线交于,两点,且线段恰好以点为中点,若存在,求出直线L的方程,若不存,说明理由.
如图,在直三棱柱中, , ,,点是的中点.四面体的体积是,求异面直线与所成的角.
若函数满足:集合中至少存在三个不同的数构成等比数列,则称函数是等比源函数.(1)判断下列函数:①;②中,哪些是等比源函数?(不需证明)(2)证明:对任意的正奇数,函数不是等比源函数;(3)证明:任意的,函数都是等比源函数.
如图,已知平面内一动点到两个定点、的距离之和为,线段的长为.(1)求动点的轨迹;(2)当时,过点作直线与轨迹交于、两点,且点在线段的上方,线段的垂直平分线为①求的面积的最大值;②轨迹上是否存在除、外的两点、关于直线对称,请说明理由.
某人沿一条折线段组成的小路前进,从到,方位角(从正北方向顺时针转到方向所成的角)是,距离是3km;从到,方位角是110°,距离是3km;从到,方位角是140°,距离是()km.试画出大致示意图,并计算出从A到D的方位角和距离(结果保留根号).
已知函数,,.(1)若,试判断并用定义证明函数的单调性;(2)当时,求证函数存在反函数.