已知双曲线实轴在轴,且实轴长为2,离心率, L是过定点的直线.(1)求双曲线的标准方程;(2)判断L能否与双曲线交于,两点,且线段恰好以点为中点,若存在,求出直线L的方程,若不存,说明理由.
已知是各项均为正数的等比数列,是等比数列吗?为什么?
图中的三角形称为希尔宾斯基三角形,在下图4个三角形中,着色三角形的个数依次构成一个数列的前4项,请写出这个数列的一个通项公式,并在直角坐标系中画出它的图象.
(1)
某城市今年空气质量为“良”的天数共为105 天,力争2年后使空气质量为“良”的天数达到240天.这个城市空气质量为“良”的天数的年平均增长率为多少?(精确到小数点后2位)
如图,长方体ABCDA1B1C1D1中,AB=3,BC=2,BB1=1,由A到C1在长方体表面上的最短距离为多少?
如图所示,小明设计了某个产品的包装盒,他少设计了其中一部分,请你把它补上,使其成为两边均有盖的正方体盒子. (1)你有__________种弥补的办法. (2)任意画出一种成功的设计图.