如图,CD是半圆O的一条弦,CD∥AB,延长OA、OB至F、E,使,联结FC、ED,CD=2,AB=6。(1)求∠F的正切值;(2)联结DF,与半径OC交于H,求△FHO的面积。
解方程:
如图,∠C=90°,点A、B在∠C的两边上,CA=30,CB=20,连结AB.点P从点B出发,以每秒4个单位长度的速度沿BC方向运动,到点C停止.当点P与B、C两点不重合时,作PD⊥BC交AB于D,作DE⊥AC于E.F为射线CB上一点,且∠CEF=∠ABC.设点P的运动时间为x(秒).(1)用含有x的代数式表示CF的长.(2)求点F与点B重合时x的值.(3)当点F在线段CB上时,设四边形DECP与四边形DEFB重叠部分图形的面积为y(平方单位).求y与x之间的函数关系式.(4)当x为某个值时,沿PD将以D、E、F、B为顶点的四边形剪开,得到两个图形,用这两个图形拼成不重叠且无缝隙的图形恰好是三角形.请直接写出所有符合上述条件的x值.
甲、乙两组工人同时加工某种零件,乙组工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量(件)与时间(时)的函数图象如图所示.(1)求甲组加工零件的数量y与时间之间的函数关系式.(2)求乙组加工零件总量的值.(3)甲、乙两组加工出的零件合在一起装箱,每够300件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱?再经过多长时间恰好装满第2箱?
探究如图①,在□ABCD的形外分别作等腰直角△ABF和等腰直角△ADE,∠FAB=∠EAD=90°,连结AC、EF.在图中找一个与△FAE全等的三角形,并加以证明.应用以□ABCD的四条边为边,在其形外分别作正方形,如图②,连结EF、GH、IJ、KL.若□ABCD的面积为5,则图中阴影部分四个三角形的面积和为 .
如图,平面直角坐标系中,抛物线 y = 1 2 x 2 - 2 x = 3 交 y 轴于点 A , P 为抛物线 上一点,且与点 A 不重合.连结 A P ,以 A O , A P 为邻边作 ▱ O A P Q , P Q 所在直线与 x 轴交 于点 B .设点P的横坐标为 m . (1)点 Q 落在 x 轴上时 m 的值. (3)若点 Q 在 x 轴下方,则 m 为何值时,线段 B Q 的长取最大值,并求出这个最大值.[参考公式:二次函数 y = a x 2 + b x + c a ≠ 0 的顶点坐标为 - b 2 a , 4 a c - b 2 4 a ]