某校从高一年级学生中随机抽取40名学生作为样本,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六组:,,…,后得到如图的频率分布直方图.(Ⅰ)求图中实数的值;(Ⅱ)若该校高一年级共有学生500人,试估计该校高一年级在这次考试中成绩不低于60分的人数;(Ⅲ)若从样本中数学成绩在与两个分数段内的学生中随机选取两名学生,试用列举法求这两名学生的数学成绩之差的绝对值不大于10的概率.
.(12分)在直角坐标系中,以为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,、分别为曲线与轴,轴的交点。(1)写出曲线的直角坐标方程,并求、的极坐标;(2)设中点为,求直线的极坐标方程。
(12分)如图,的角平分线AD的延长线交它的外接圆于点E(I)证明:(II)若的面积,求的大小。
.(12分)设是一个离散型随机变量,其分布列如下表,试求随机变量的期望与方差.
.(12分)已知的展开式中前三项的系数成等差数列.(1)求n的值;(2)求展开式中系数最大的项.
(12分) 一盒中装有分别标记着1,2,3,4的4个小球,每次从袋中取出一只球,设每只小球被取出的可能性相同.(1)若每次取出的球不放回盒中,现连续取三次球,求恰好第三次取出的球的标号为最大数字的球的概率;(2)若每次取出的球放回盒中,然后再取出一只球,现连续取三次球,这三次取出的球中标号最大数字为,求的分布列与数学期望.