已知函数.(Ⅰ)当时,求的单调区间;(Ⅱ)设函数在点处的切线为,直线与轴相交于点.若点的纵坐标恒小于1,求实数的取值范围.
已知圆及点,在圆上任取一点,连接,做线段的中垂线交直线于点.(1)当点在圆上运动时,求点的轨迹的方程;(2)设轨迹与轴交于两点,在轨迹上任取一点,直线分别交轴于两点,求证:以线段为直径的圆过两个定点,并求出定点坐标.
如图,斜三棱柱的底面是直角三角形,,点在底面内的射影恰好是的中点,且.(1)求证:平面平面;(2)若二面角的余弦值为,设,求的值.
要从甲,乙两名运动员中选拔一人参加2012年伦敦奥运会跳水项目,对甲乙两人进行培训.现分别从他们在培训期间参加的若干次预赛成绩中随机抽取6次,得出成绩茎叶图如图所示.(1)从平均成绩及发挥稳定性的角度考虑,你认为选派哪名运动员更合适?(2)若将频率视为概率,对甲运动员在今后3次的比赛成绩进行预测,记这3次成绩中高于80分的次数为,求的分布列及数学期望.
已知数列的前项和为,且满足. (1)求数列的通项公式; (2)若,,且数列的前项和为,求的取值范围.
已知等比数列中,.若,数列前项的和为.(Ⅰ)若,求的值; (Ⅱ)求不等式的解集.(Ⅲ)设 ,求数列的前n项的和Tn。