已知点M是圆C:上的一点,且轴,为垂足,点满足,记动点的轨迹为曲线E.(Ⅰ)求曲线E的方程;(Ⅱ)若AB是曲线E的长为2的动弦,O为坐标原点,求面积S的最大值.
(本小题满分16分) 设为实数,函数. (1)若,求的取值范围; (2)求的最小值; (3)设函数,直接写出(不需给出演算步骤)不等式的解集.
(本小题满分12分)如图,三定点A(2,1),B(0,-1),C(-2,1); 三 动点D,E,M满足="t," =" t" ,="t" , t∈[0,1]. (Ⅰ) 求动直线DE斜率的变化范围; (Ⅱ) 求动点M的轨迹方程.
(本小题满分12分)已知数列中,是其前项和,并且,⑴设数列,求证:数列是等比数列;⑵设数列,求证:数列是等差数列;⑶求数列的通项公式及前项和。
(本小题满分10分)某单位建造一间地面面积为12m2的背面靠墙的矩形小房,由于地理位置的限制,房子侧面的长度x不得超过米,房屋正面的造价为400元/m2,房屋侧面的造价为150元/m2,屋顶和地面的造价费用合计为5800元,如果墙高为3m,且不计房屋背面的费用.(1)把房屋总造价表示成的函数,并写出该函数的定义域.(2)当侧面的长度为多少时,总造价最底?最低总造价是多少?
(本小题满分10分)已知函数的图像在点处的切线为。(1)求函数及单调区间;(2)求函数在区间上的最值。