已知函数,(1)求函数的单调递增区间;(2)若不等式在区间(0,+上恒成立,求的取值范围;(3)求证:
(本小题满分13分)已知三角形ABC的顶点坐标为A(-1,5)、B(-2,-1)、C(4,3)。(1)求AB边上的高线所在的直线方程;(2)求三角形ABC的面积。
(本小题满分16分)已知, 且.(Ⅰ)当时,求在处的切线方程;(Ⅱ)当时,设所对应的自变量取值区间的长度为(闭区间 的长度定义为),试求的最大值;(Ⅲ)是否存在这样的,使得当时,?若存在,求出的取值范围;若不存在,请说明理由.
已知无穷数列{an}中,a1,a2,…,am是首项为10,公差为-2的等差数列;am+1,am+2,…,a2m是首项为,公比为的等比数列(其中 m≥3,m∈N*),并对任意的n∈N*,均有an+2m=an成立.(1)当m=12时,求a2010;(2)若a52=,试求m的值;(3)判断是否存在m(m≥3,m∈N*),使得S128m+3≥2010成立?若存在,试求出m的值;若不存在,请说明理由.
(本题满分16分) 已知圆,点,直线.⑴求与圆相切,且与直线垂直的直线方程;⑵在直线上(为坐标原点),存在定点(不同于点),满足:对于圆上任一点,都有为一常数,试求所有满足条件的点的坐标.
如图,灌溉渠的横截面是等腰梯形,底宽2米,边坡的长为x米、倾角为锐角.(1)当且灌溉渠的横截面面积大于8平方米时,求x的最小正整数值;(2)当x=2时,试求灌溉渠的横截面面积的最大值.