已知函数,问是否存在实数使在上取最大值3,最小值-29,若存在,求出的值;不存在说明理由。
(本小题满分12分)已知满足. (Ⅰ)将表示为的函数,并求出的单调递增区间; (Ⅱ)已知的三个内角、、的对边分别为、、,若,且,求的面积的最大值.
(本小题14分)已知函数. (1)若在上的最大值为,求实数的值; (2)若对任意,都有恒成立,求实数的取值范围; (3)在(1)的条件下,设,对任意给定的正实数,曲线上是否存在两点、,使得是以(为坐标原点)为直角顶点的直角三角形,且此三角形斜边中点在轴上?请说明理由。
(本小题13分)已知离心率为的椭圆经过点. (1)求椭圆的方程; (2)过左焦点且不与轴垂直的直线交椭圆于、两点,若(为坐标原点),求直线的方程.
(本小题12分)已知函数. (1)证明函数的图像关于点对称; (2)若,求; (3)在(2)的条件下,若,为数列的前项和,若对一切都成立,试求实数的取值范围.
(本小题12分)如图,已知平面,,为等边三角形,,为的中点. (1)求证:平面; (2)求证:平面平面; (3)求直线和平面所成角的正弦值.