如图,点A,B分别在一次函数y=x,y=8x的图象上,其横坐标分别为a,b (a>0,b>0).设直线AB的解析式为y=kx+m,若是整数时,k也是整数,满足条件的k值为 .
(11·天水)抛物线y=-x2+bx+c的部分图象如图所示,若函数y>0值时,则x的取值范围是_ ▲ .
(11·天水)计算:sin230°+tan44°tan46°+sin260°=_ ▲ .
(11·天水)如图(1),在宽为20m,长为32m的矩形耕地上修建同样宽的三条道路(横向与纵向垂直),把耕地分成若干小矩形块,作为小麦试验田国,假设试验田面积为570m2,求道路宽为多少?设宽为x m,从图(2)的思考方式出发列出的方程是_ ▲ .
(11·天水)为了测量校园内一棵不可攀的树的高度,学校数学应用实践小组做了如下的探索:根据光的反射定律,利用一面镜子和皮尺,设计如图所示的测量方案:把镜子放在离树(AB)8.7m的点E处,然后观测考沿着直线BE后退到点D,这时恰好在镜子里看到树梢顶点A,再用皮尺量得DE=2.7m,观测者目高CD=1.6m,则树高AB约是_ ▲ .(精确到0.1m)