圆与圆的公共弦所在直线的方程为 .
函数的最小正周期为.
在直角坐标系中,椭圆的参数方程为.在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,直线与圆的极坐标方程分别为(为非零常数)与.若直线经过椭圆的焦点,且与圆相切,则椭圆的离心率为
如图,圆上一点在直径上的射影为,点在半径上的射影为.若,则的值为.
古希腊毕达哥拉斯学派的数学家研究过各种多边形数,如三角形数 1 , 3 , 6 , 10 . . . ,第 n 个三角形数为 n ( n + 1 ) 2 = 1 2 n 2 + 1 2 n .记第 n 个 k 边形数为 N ( n , k ) ( k ≥ 3 ) ,以下列出了部分 k 边形数中第 n 个数的表达式: 三角形数 N ( n , 3 ) = 1 2 n 2 + 1 2 n , 正方形数 N ( n , 4 ) = n 2 , 五边形数 N ( n , 5 ) = 3 2 n 2 - 1 2 n , 六边形数 N ( n , 6 ) = 2 n 2 - n , … 可以推测 N ( n , k ) 的表达式,由此计算 N ( 10 , 24 ) = .
设,且满足:,则=.