已知函数有三个极值点。(I)证明:;(II)若存在实数c,使函数在区间上单调递减,求的取值范围。
(本小题满分14分)已知直线:和:。问为何值时,有:(1)∥?(2)⊥?
已知函数.(Ⅰ)当时,画出函数的一个大致的图象,并指出函数的单调递增区间;(Ⅱ)若函数在区间内有零点,求实数的取值范围.
已知函数.(Ⅰ)当时,判断函数的奇偶性;(Ⅱ)若不等式的解集为A,且,求实数的取值范围.
根据统计,组装第x件某产品(),甲工人所用的时间为,乙工人所用的时间为(,为常数)(单位:分钟).已知乙工人组装第4件产品用时15分钟,组装第件产品用时10分钟.(Ⅰ)求和的值;(Ⅱ)组装第x件某产品,甲工人的用时是否可能多于乙工人的用时?若可能,求出所有x的值;若不可能,请说明理由.
将一枚质地均匀的骰子连掷两次,记向上的点数分别为.(Ⅰ)求事件“”的概率;(Ⅱ)求事件“方程有实根”的概率.