如图,在四棱锥中,四边形是菱形,,为的中点.(1)求证:面; (2)求证:平面平面.
已知函数(是常数),且,.(1) 求的值;(2) 当时,判断的单调性并证明;(3) 对任意的,若不等式恒成立,求实数的取值范围.
已知函数(1) 若函数的图象经过(3,4)点,求的值;(2) 若,求的值; (3) 比较大小,并写出比较过程.
某公司试销一种新产品,规定试销时销售单价不低于成本单价500元/件,又不高于800元/件,经试销调查,发现销售量(件)与销售单价(元/件)可近似看做一次函数的关系(图象如下图所示).(1)根据图象,求一次函数的表达式;(2)设公司获得的毛利润(毛利润=销售总价-成 本总价)为元,① 求关于的函数表达式;② 求该公司可获得的最大毛利润,并求出此时相应的销售单价.
计算:(1);(2) .
已知函数(1)在给定的直角坐标系内画出的图象;(2)写出的单调递增区间(不需要证明);(3)写出的最大值和最小值(不需要证明)