(如图,已知∠AOB=ll0°,∠AOC=m∠AOD,∠COE=n∠BOC,且3(m-2)+4=m+2,单项式的系数为n.(1)求4(m-n) 2-(m-n) 2-5的值;(2)当∠COD:∠COE=3:2时,试求∠COD的度数.
如图,在△ABD和△ACE中,AB=AD,AC=AE,∠BAD=∠CAE,连接BC、DE相交于点F,BC与AD相交于点G. (1)求证:BC=DE; (2)如果∠ABC=∠CBD ,那么线段FD是线段FG和FB的比例中项吗?为什么?
如图,点O是矩形ABCD的中心,E是AB上的点,沿CE折叠后,点B恰好与点O重合,若BC=3,求折痕CE的长.
有3个完全相同的小球,把它们分别标号为1,2,3,放在一个口袋中,随机地摸出一个小球不放回,再随机地摸出一个小球. (1)采用树形图法(或列表法)列出两次摸球出现的所有可能结果; (2)求摸出的两个球号码之和等于5的概率.
先化简,再求值:,其中.
计算:.