(本小题满分14分)如图,设点、分别是椭圆的左、右焦点,为椭圆上任意一点,且最小值为.(1)求椭圆的方程;(2)若动直线均与椭圆相切,且,试探究在轴上是否存在定点,点到的距离之积恒为1?若存在,请求出点坐标;若不存在,请说明理由.
求与两坐标轴正向围成面积为2平方单位的三角形,并且两截距之差为3的直线的方程.
求证:梯形两条对角线的中点连线平行于上、下底,且等于两底差的一半(用解析法证之).
已知,且,求的值.
已知向量,,满足条件,,求证是正三角形.
证明:设三角形的外接圆的半径是,则,,.