(本小题满分14分)如图,设点、分别是椭圆的左、右焦点,为椭圆上任意一点,且最小值为.(1)求椭圆的方程;(2)若动直线均与椭圆相切,且,试探究在轴上是否存在定点,点到的距离之积恒为1?若存在,请求出点坐标;若不存在,请说明理由.
(本小题满分12分)计算下列各式的值: (1); (2) ;
已知二次函数的图象过点,且与轴有唯一的交点。(Ⅰ)求的表达式;(Ⅱ)设函数,记此函数的最小值为,求的解析式。
已知函数。(Ⅰ)讨论的奇偶性;(Ⅱ)判断在上的单调性并用定义证明。
已知集合是满足下列性质的函数的全体:在定义域内存在,使得成立。(Ⅰ)函数是否属于集合?说明理由:(Ⅱ)若函数属于集合,试求实数和满足的约束条件;
设全集,集合,,(Ⅰ)求,,;(Ⅱ)若求实数的取值范围。