(本小题13分) 已知函数.(Ⅰ)求函数图象的对称轴方程;(Ⅱ)求的单调增区间;(Ⅲ)当时,求函数的最大值,最小值.
(本小题10分)某宾馆有50个房间供游客居住,当每个房间定价为每天180元时,房间会全部住满;房间单价增加10元,就会有一个房间空闲,如果游客居住房间,宾馆每间每天需花费20元的各种维护费用。房间定价多少时,宾馆利润最大?
(本小题10分)设是二次函数,方程有两个相等的实根,且.(1)求的表达式;(2)若直线把的图象与两坐标轴所围成图形的面积二等分,求的值.
(本小题10分) .(1)求的单调区间;(2)求函数在上的最值.
已知定圆,定直线,过的一条动直线与直线相交于,与圆相交于两点,是中点. (Ⅰ)当与垂直时,求证:过圆心;(Ⅱ)当时,求直线的方程;(Ⅲ)设,试问是否为定值,若为定值,请求出的值;若不为定值,请说明理由.
已知定义域为R的函数是奇函数.①求m、n的值;②若对任意的t∈,不等式恒成立,求实数k的取值范围.