一个不透明的布袋里装有4个大小、质地均相同的乒乓球,每个球上面分别标有1,2,3,4.小林先从布袋中随机抽取一个乒乓球(不放回去),再从剩下的3个球中随机抽取第二个乒乓球.(1)请你列出所有可能的结果;(2)求两次取得乒乓球的数字之积为奇数的概率.
观察例题: ∵,即, ∴的整数部分为2,小数部分为。 请你观察上述的规律后试解下面的问题: 如果的小数部分为,的小数部分为,求的值.
如图⑴,一等腰直角三角尺()的两条直角边与正方形的两条边分别重合在一起. 现正方形保持不动,将三角尺绕斜边的中点(点也是中点)旋转. ①若将三角尺绕斜边的中点按顺时针方向旋转到如图⑵,当与相交于点,与相交于点时,通过观察或测量、的长度,猜想、满足的数量关系,并证明你的猜想; ②若三角尺旋转到如图⑶所示的位置时,线段的延长线与的延长线相交于点,线的延长线与的延长线相交于点,此时,①中的猜想还成立吗?若成立,请证明;若不成立,请说明理由.
如图,△ABC是等边三角形,D是BC边的中点,点 E在AC的延长线上,且∠CDE=30°.若AD=,求DE的长.
如图:△ABC中,∠ABC和∠ACB的平分线交于F点,过F点作DE∥BC,分别交AB、AC于点D、E。求证:DE=BD+CE
已知:如图12,C、D在AB上,且AC=BD,AE∥FB,DE∥FC.求证:AE=BF。