(本小题满分14分) 已知在单位圆x²+y²=1上任取一点M,作MN⊥x轴,垂足为N, = 2. (Ⅰ)求动点Q的轨迹的方程; (Ⅱ)设点,点为曲线上任一点,求点到点距离的最大值; (Ⅲ)在的条件下,设△的面积为(是坐标原点,是曲线上横坐标为的点),以为边长的正方形的面积为.若正数满足,问是否存在最小值,若存在,请求出此最小值,若不存在,请说明理由.
已知集合,,求实数的值。
(14分)已知数列的首项,,…. (1)数列的通项公式; (2)求数列的前项和.
(14分)等差数列{an}中,公差,其前项和为,且满足,。 (1)求数列{an}的通项公式; (2)构造一个新的数列{bn},,若{bn}也是等差数列,求非零常数.
(14分)一农民有基本农田2亩,根据往年经验,若种水稻,则每季每亩产量为400公斤,但需成本240元;若种花生,则每季每亩产量为100公斤,但成本只需80元。种花生每公斤可卖5元,稻米每公斤卖3元.现该农民手头有400元,两种作物各种多少,才能获得最大收益?
(14分)设条件p:(4x-3)2-1≤0;条件q:x2-(2m+1)x+m(m+1)≤0,若p是q的必要不充分条件,求实数m的取值范围.