(本小题满分14分) 已知在单位圆x²+y²=1上任取一点M,作MN⊥x轴,垂足为N, = 2. (Ⅰ)求动点Q的轨迹的方程; (Ⅱ)设点,点为曲线上任一点,求点到点距离的最大值; (Ⅲ)在的条件下,设△的面积为(是坐标原点,是曲线上横坐标为的点),以为边长的正方形的面积为.若正数满足,问是否存在最小值,若存在,请求出此最小值,若不存在,请说明理由.
设为坐标原点, 为直线上动点, , , 求点的轨迹方程.
已知,且,,求的值.
已知,,求的范围.
设函数.⑴将函数写成的形式.⑵求函数的周期、最大值及最小值及当函数取最大值和最小值时相应的值的集合.(3)求函数的单调递增区间.
已知,求的值.