(本小题满分14分) 已知在单位圆x²+y²=1上任取一点M,作MN⊥x轴,垂足为N, = 2. (Ⅰ)求动点Q的轨迹的方程; (Ⅱ)设点,点为曲线上任一点,求点到点距离的最大值; (Ⅲ)在的条件下,设△的面积为(是坐标原点,是曲线上横坐标为的点),以为边长的正方形的面积为.若正数满足,问是否存在最小值,若存在,请求出此最小值,若不存在,请说明理由.
(本小题满分12分)如图,在四棱锥P—ABCD中,底面ABCD为菱形且∠DAB=60°,O为AD中点. (Ⅰ)若PA=PD,求证:平面POB⊥平面PAD; (Ⅱ)若平面PAD⊥平面ABCD,且PA=PD=AD=2,试问在线段PC上是否存在点M,使二面角M—BO—C的大小为60°,如存在,求的值,如不存在,说明理由.
(本小题满分12分)为了解今年某校高三毕业班准备报考飞行员学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1:2:3,其中第2小组的频数为12. (Ⅰ)求该校报考飞行员的总人数; (Ⅱ)以这所学校的样本数据来估计全省的总体数据,若从全省报考飞行员的同学中(人数很多)任选三人,设X表示体重超过60公斤的学生人数,求X的分布列和数学期望.
(本小题满分12分)根据下列算法语句,将输出的A值依次记为 (Ⅰ)求数列的通项公式; (Ⅱ)已知函数的最小正周期是,且函数的图象关于直线对称,求函数在区间上的值域.
(本小题满分10分)设. (1)若数列的各项均为1,求证:; (2)若对任意大于等于2的正整数,都有恒成立,试证明数列是等差数列.
(本小题满分10分)如图,已知四棱锥的底面是菱形,对角线交于点,,,,底面,设点满足. (1)当时,求直线与平面所成角的正弦值; (2)若二面角的大小为,求的值.