(8分)已知函数.(1)写出它的振幅、周期、频率和初相;(2)求这个函数的单调递减区间;(3)求出使这个函数取得最大值时,自变量的取值集合,并写出最大值。
已知直线的参数方程为,(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为. (1)把圆C的极坐标方程化为直角坐标方程; (2)将直线向右平移h个单位,所得直线与圆C相切,求h.
已知.(1)求函数的最大值;(2)设,,且,证明:.
P为圆A:上的动点,点.线段PB的垂直平分线与半径PA相交于点M,记点M的轨迹为Γ.(1)求曲线Γ的方程;(2)当点P在第一象限,且时,求点M的坐标.
甲、乙、丙三个车床加工的零件分别为350个,700个,1050个,现用分层抽样的方法随机抽取6个零件进行检验.(1)求从甲、乙、丙三个车床中抽取的零件的件数;(2)从抽取的6个零件中任意取出2个,已知这两个零件都不是甲车床加工的,求其中至少有一个是乙车床加工的零件.
在中,角的对边分别为,且.(1)求的值;(2)若成等差数列,且公差大于0,求的值.