(8分)已知函数.(1)写出它的振幅、周期、频率和初相;(2)求这个函数的单调递减区间;(3)求出使这个函数取得最大值时,自变量的取值集合,并写出最大值。
如图,已知四棱锥P-ABCD,底面ABCD为边长为2的菱形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC的中点.(Ⅰ)判定AE与PD是否垂直,并说明理由;(Ⅱ)若PA=2,求二面角E-AF-C的余弦值.
某工厂为了检查一条流水线的生产情况,从该流水线上随机抽取40件产品,测量这些产品的重量(单位:克),整理后得到如下的频率分布直方图(其中重量的分组区间分别为(490,495],(495,500],(500,505],(505,510],(510,515])(1)若从这40件产品中任取两件,设X为重量超过505克 的产品数量,求随机变量X的分布列;(2)若将该群体分别近似看作总体分布,现从该流水线上任取5件产品,求恰有两件产品的重量超过505克的概率.
已知数列前n项和为,满足(1)证明:是等比数列,并求的通项公式;(2)数列满足,为数列的前n项和,若对正实数a都成立,求a的取值范围.
设函数,.(1)当时,求不等式的解集;(2)对任意,恒有,求实数的取值范围.
在直角坐标系中,曲线的参数方程为(为参数),以原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.(1)求曲线的普通方程与曲线的直角坐标方程;(2)曲线与曲线交于两点,与轴交于点,求的值.