(8分)已知函数.(1)写出它的振幅、周期、频率和初相;(2)求这个函数的单调递减区间;(3)求出使这个函数取得最大值时,自变量的取值集合,并写出最大值。
(本小题满分12分)已知为数列的前项和,且,,,…(1)求证:数列为等比数列:(2)设,求数列的前项和.
(本小题满分12分)如图,在四棱锥中,底面,是直角梯形,,,,是的中点.(1)求证;平面平面;(2)若二面角的余弦值为,求直线与平面所成角的正弦值.
(本小题满分12分)口袋中装有除颜色,编号不同外,其余完全相同的2个红球,4个黑球,现从中同时取出3个球.(1)求恰有两个黑球的概率; (2)记取出红球的个数为随机变量,求的分布列和数学期望.
(本小题满分12分)设的内角,,所对的边分别为,,,且.(1)求角的大小; (2)若,求的周长的取值范围.
已知函数.(1)当 时,与在定义域上单调性相反,求的最小值。(2)当时,求证:存在,使有三个不同的实数解,且对任意且都有.