(8分)已知函数.(1)写出它的振幅、周期、频率和初相;(2)求这个函数的单调递减区间;(3)求出使这个函数取得最大值时,自变量的取值集合,并写出最大值。
.(本小题满分12分)已知数列、均为等差数列,设.(1)数列是否为等比数列?证明你的结论;(2)设数列、的前n项和分别为和,若,,求数列的前n项和 .
..已知动圆P过点并且与圆相外切,动圆圆心P的轨迹为W,过点N的直线与轨迹W交于A、B两点。(1)求轨迹W的方程;(2)若,求直线的方程;(3)对于的任意一确定的位置,在直线上是否存在一点Q,使得,并说明理由。
.已知函数。(1)求函数的极大值;(2)当时,求函数的值域;(3)设,当时,恒成立,求的取值范围。
已知函数上恒成立.(1)求的值;(2)若(3)是否存在实数m,使函数上有最小值-5?若存在,请求出实数m的值;若不存在,请说明理由.
已知函数满足,,;且使成立的实数只有一个。(Ⅰ)求函数的表达式;(Ⅱ)若数列满足,,,,证明数列 是等比数列,并求出的通项公式;(Ⅲ)在(Ⅱ)的条件下,证明:,