(8分)已知函数.(1)写出它的振幅、周期、频率和初相;(2)求这个函数的单调递减区间;(3)求出使这个函数取得最大值时,自变量的取值集合,并写出最大值。
某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A原料1千克、B原料2千克;生产乙产品1桶需耗A原料2千克,B原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A、B原料都不超过12千克.求该公司从每天生产的甲、乙两种产品中,可获得的最大利润.
已知向量a=(1,2),b=(-2,m),m∈R.(Ⅰ)若a∥b,求m的值;(Ⅱ)若a⊥b,求m的值.
已知函数(是不为零的实数,为自然对数的底数).(1)若曲线与有公共点,且在它们的某一公共点处有共同的切线,求k的值;(2)若函数在区间内单调递减,求此时k的取值范围.
下面四个图案,都是由小正三角形构成,设第n个图形中所有小正三角形边上黑点的总数为. 图1 图2 图3 图4(1)求出,,,;(2)找出与的关系,并求出的表达式;(3)求证:().
根据以往资料统计,大学生购买某品牌平板电脑时计划采用分期付款的期数ζ的分布列为
(1)若事件A={购买该平板电脑的3位大学生中,至少有1位采用1期付款},求事件A的概率P(A);(2)若签订协议后,在实际付款中,采用1期付款的没有变化,采用2、3期付款的都至多有一次改付款期数的机会,其中采用2期付款的只能改为3期,概率为;采用3期付款的只能改为2期,概率为.数码城销售一台该平板电脑,实际付款期数与利润(元)的关系为
(3)求的分布列及期望E().