如图,矩形草坪的长为20m,的长为10m,沿草坪四周外围有1m宽的环形道路,小路内外边缘所成的矩形与矩形相似吗?
如图(1),直线与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线与x轴的另一个交点为A,顶点为P.(1)求该抛物线的解析式及顶点P的坐标;(2)连结AC,在x轴上是否存在点Q,使以P、B、Q为顶点的三角形与△ABC相似?若存在,请求出点Q的坐标;若不存在,请说明理由;(3)动点M从B点开始沿BO边向点O以每秒2个单位的速度运动,动点N从点O开始沿OC边向点C以每秒1个单位的速度运动,当点M到达O点时,点N也随之停止运动.在整个运动过程中,求:线段MN的中点所经过的路程长.
如图,已知矩形ABCD,AB=,BC=3,在BC上取两点E,F(E在F左边),以EF为边作等边三角形PEF,使顶点P在AD上,PE,PF分别交AC于点G,H.(1)求△PEF的边长;(2)若△PEF的边EF在射线BC上移动(点E的移动范围在B、C之间,不与B、C两点重合).设BE=x,PH=y.①求y与x的函数关系式;②连接BG,设△BEG面积为S,求S与x的函数关系式,判断x为何值时S最大,并求最大值S.
如图,一条直线与反比例函数的图象交于A(1,4),B(4,n)两点,与x轴交于点D,AC⊥x轴,垂足为C.(1)求反比例函数的解析式及D点的坐标;(2)点P是线段AD的中点,点E,F分别从C,D两点同时出发,以每秒1个单位的速度沿CA,DC运动,到点A,C时停止运动,设运动的时间为t(s).①求证:PE=PF.②若△PEF的面积为S,求S的最小值.
一个不透明的布袋里装有3个球,其中2个红球,1个白球,它们除颜色外其余都相同.(1)求摸出1个球是白球的概率;(2)摸出1个球,记下颜色后放回,并搅均,再摸出1个球.求两次摸出的球恰好颜色不同的概率(要求画树状图或列表);(3)现再将n个白球放入布袋,搅均后,使摸出1个球是白球的概率为.求n的值.
如图,在一块长为22米,宽为17米的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条边平行),剩余部分种上草坪,使草坪面积为300平方米,那么道路的宽度应该是多少?