设Sn为数列{an}为前n项和,对任意的都有(m为常数且m>0)(1)求证:{an}为等比数列;(2)设数列{an}的公比q=f(m),数列{bn}满足,求数列{bn}的通项公式;(3)在(2)的条件下,求数列的前n项和Tn。
已知是一个单调递增的等差数列,且满足,,数列的前项和为,数列满足. (Ⅰ)求数列的通项公式;(Ⅱ)求数列的前项和.
选修4—5:不等式选讲 已知函数,. (Ⅰ)当时,求不等式的解集; (Ⅱ)设,且当时,,求a的取值范围.
选修4—4:坐标系与参数方程 已知曲线C1的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为. (Ⅰ)把C1的参数方程化为极坐标方程;(Ⅱ)求C1与C2交点的极坐标().
选修4—1:几何证明选讲 如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于点D. (Ⅰ)证明:DB=DC; (Ⅱ)设圆的半径为1,,延长CE交AB于点F,求△BCF外接圆的半径.
已知函数,其中. (1)当a=3,b=-1时,求函数的最小值; (2)当a>0,且a为常数时,若函数对任意的,总有成立,试用a表示出b的取值范围.