设Sn为数列{an}为前n项和,对任意的都有(m为常数且m>0)(1)求证:{an}为等比数列;(2)设数列{an}的公比q=f(m),数列{bn}满足,求数列{bn}的通项公式;(3)在(2)的条件下,求数列的前n项和Tn。
(本小题满分12分)在平面直角坐标系中,点在角的终边上,点在角的终边上,且. (1)求的值;(2)求的值.
(本小题满分10分)在中,内角所对的边分别为,若. (1)求证:成等比数列;(2)若,求的面积.
(本小题满分12分)设函数, (1)证明:是上的增函数; (2)设,当时,恒成立,求的取值范围.
(本小题满分12分)已知椭圆:上任意一点到两焦点距离之和为,离心率为,动点在直线上,过作直线的垂线,设交椭圆于点. (1)求椭圆的标准方程; (2)证明:直线与直线的斜率之积是定值;
(本小题满分12分)在长方体中,,.点是线段上的动点,点为的中点. (1)当点是中点时,求证:直线∥平面; (2)若二面角的余弦值为,求线段的长.