(本小题满分12分)已知椭圆C:(.(1)若椭圆的长轴长为4,离心率为,求椭圆的标准方程;(2)在(1)的条件下,设过定点的直线与椭圆C交于不同的两点,且为锐角(其中为坐标原点),求直线的斜率k的取值范围;(3)如图,过原点任意作两条互相垂直的直线与椭圆()相交于四点,设原点到四边形一边的距离为,试求时满足的条件.
欲修建一横断面为等腰梯形(如图1)的水渠,为降低成本必须尽量减少水与渠壁的接触面,若水渠横断面面积设计为定值S,渠深h,则水渠壁的倾角α(0°<α<90°)应为多大时,方能使修建成本最低?
分析方程在的解的个数.
已知定义在区间上的函数y=f(x)的图象关于直线x=-对称,当x∈时,函数f(x)=Asin(ωx+φ) 的图象如图所示. (1)求函数y=f(x)在上的表达式; (2)求方程f(x)=的解.
A、B是单位圆O上的动点,且A、B分别在第一、二象限.C是圆O与x轴正半轴的交点,△AOB为正三角形.记∠AOC=α. (1)若A点的坐标为,求的值; (2)求的取值范围.
已知函数f(x)=sin. (1)求它的振幅、周期、初相; (2)在所给坐标系中用五点法作出它在区间上的图象. (3)说明y=sin x的图像可由y=sin的图像经过怎样的变换而得到.