如图,有一直径是1m的圆形铁皮,要从中剪出一个最大的圆心角是90°的扇形ABC,求:(1)被剪掉的阴影部分的面积;(2)用所留的扇形铁皮围成一个圆锥,该圆锥的底面圆半径是多少?(结果可用根号表示)
如图,AB是半圆的直径,O为圆心,AD、BD是半圆的弦,且∠PDA=∠PBD。 (1) 判断直线PD是否为⊙O的切线,并说明理由; (2) 如果ÐBDE=60°,PD=,求PA的长。
我市每年五月将进行中考理、化实验操作考试。采用学生抽签方式决定自己的考试内容.规定:每位考生必须在三个物理实验(用纸签A、B、C表示)和三个化学实验(用纸签D、E、F表示)中各抽取一个进行考试.小刚在看不到纸签的情况下,分别从中各随机抽取一个.(1)用“列表法”或“树状图法”表示所有可能出现的结果;(2)小刚抽到物理实验B和化学实验F(记作事件M)的概率是多少?
已知,如图,M是弧AB的中点,过点M的弦MN交于点C,设圆O的半径为4厘米,MN=4cm,(1)求圆心O到弦MN的距离;(2)求∠ACM的度数。
在平面直角坐标系中,矩形的顶点O在坐标原点,顶点A、B分别在轴、轴的正半轴上,,,D为边OB的中点.若为边上的一个动点,当△的周长最小时,求点的坐标并求三角形CDE的面积。
如图,在△ABC中,∠CAB、∠ABC的平分线交于点D,DE∥AC交BC于点E,DF∥BC交AC于点F.求证:四边形DECF为菱形.