已知函数.(Ⅰ)当时,讨论的单调性;(Ⅱ)设时,若对任意,存在,使,求实数的取值范围.
在轴同侧的两个圆:动圆和圆外切(),且动圆与轴相切,求(1)动圆的圆心轨迹方程L;(2)若直线与曲线L有且仅有一个公共点,求之值。
正方形的两顶点在抛物线上,两点在直线上,求正方形的边长。
设椭圆的方程为 , 线段 是过左焦点 且不与 轴垂直的焦点弦. 若在左准线上存在点 , 使 为正三角形, 求椭圆的离心率 的取值范围, 并用 表示直线 的斜率.
过点作一条直线和分别相交于两点,试求的最大值。(其中为坐标原点)
已知椭圆ε:(a>b>0),动圆:,其中b<R<a. 若A是椭圆ε上的点,B是动圆上的点,且使直线AB与椭圆ε和动圆均相切,求A、B两点的距离的最大值.