已知函数。(Ⅰ)设,讨论的单调性;(Ⅱ)若对任意恒有,求的取值范围。
(本小题满分12分) 已知点在抛物线上(如图), 过作轴交抛物线于另一点,设抛物线与轴相交于两点,试求为何值时,梯形的面积最大,并求出面积的最大值.
(本小题满分12分) 袋里装有30个球上都记有1到30的一个号码, 设号码为的球重量为(克). 这些球以等可能性(不受重量, 号码的影响)从袋里取出. 如果任意取出1球, 求其重量大于号码的概率; 如果同时任意取出2球, 试求它们重量相同的概率.
(本小题满分12分) 如图,三棱锥中,底面于,,点,点分别是的中点. (1) 求证:侧面⊥侧面; (2) 求点到平面的距离; (3) 求异面直线与所成的角的余弦.
(本小题满分12分)均为等腰直角三角形, 已知它们的直角顶点…,在曲线上,在轴上(如图), (1) 求斜边的长; (2) 写出数列的通项公式.
(本小题满分12分) 一元二次方程的两个实数根为和. (1) 求实数的取值范围; (2) 求的取值范围及其最小值