(本小题满分12分)在数列中,且成等差数列,成等比数列(1)求及;(2)猜想的通项公式,并证明你的结论.
(本小题6分)已知直线l在两坐标轴上的截距相等,且点到直线的距离为,求直线的方程.
已知椭圆的离心率为,短轴的一个端点到右焦点的距离为。 (1)求椭圆C的方程; (2)设直线L与椭圆C交于A、B两点,坐标原点O到L的距离的,求△AOB面积的最大值。
已知正方体中,E,F分别是,CD的中点 (1)证明: (2)证明:平面AED⊥ (3)设,求三棱锥的体积。
已知过点A(0,1)且斜率为的直线与圆C:相交于M、N两点。 (1)求实数的取值范围 (2)求证:为定值 (3)若O为坐标原点,且,求K值。
如图,在四面体ABCD中,CB=CD,AD⊥BD,点E,F分别是AB,BD的中点。 求证:(1)直线EF∥面ACD; (2)平面EFC⊥面BCD。