(本小题满分12分)椭圆的左、右焦点分别为、,点,满足.(1)求椭圆的离心率;(2)设直线与椭圆相交于两点,若直线与圆相交于两点,且,求椭圆的方程.
求过点且圆心在直线上的圆的方程。
一个三棱柱的底面是边长为3的正三角形,侧棱垂直于底面,它的三视图如图所示,.(1)请画出它的直观图;(2)求这个三棱柱的表面积和体积.
定义:若函数在某一区间D上任取两个实数、,且,都有,则称函数在区间D上具有性质L。(1)写出一个在其定义域上具有性质L的对数函数(不要求证明)。(2)对于函数,判断其在区间上是否具有性质L?并用所给定义证明你的结论。(3)若函数在区间(0,1)上具有性质L,求实数的取值范围。
如图,四棱锥中,,,侧面为等边三角形,.(Ⅰ)证明:平面;(Ⅱ)求与平面所成角的正弦值.
已知函数=,2≤≤4(1)求该函数的值域;(2)若对于恒成立,求的取值范围.