定义:若函数在某一区间D上任取两个实数、,且,都有,则称函数在区间D上具有性质L。(1)写出一个在其定义域上具有性质L的对数函数(不要求证明)。(2)对于函数,判断其在区间上是否具有性质L?并用所给定义证明你的结论。(3)若函数在区间(0,1)上具有性质L,求实数的取值范围。
设是一个离散型随机变量,其分布列如下表:求值,并求.
求证:函数在区间上是减函数.
判断函数在处是否可导.
一个骰子,投掷120次,标有数字1,2,3,4,5,6的各面向上的次数测得分别为18,19,21,22,20,20.作出试验结果的频率分布表并绘制条形图.
讨论函数在处的连续性与可导性.