如图,A,F和B三点在一条直线上,CF⊥AB于F,AF=FH,CF=FB.求证:BE⊥AC.
正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM. (1)求证:EF=FM; (2)当AE=1时,求EF的长.21教育网
如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(-3,-1),B(-5,-4),C(-2,-3) (1)作出△ABC向上平移6个单位,再向右平移7个单位的△A1B1C1。 (2)作出△ABC关于y轴对称的△A2B2C2,并写出点C2的坐标; (3)将△ABC绕点O顺时针旋转900后得到△A3B3C3,请你画出旋转后的△A3B3C3
请在同一坐标系中画出二次函数①;②的图象。说出两条抛物线的位置关系,指出②的开口方向、对称轴和顶点坐标及增减性。
解下列方程: (1) (2)
如图,点A是反比例函数图像上的一点,过点A作AB⊥轴于点B,且△AOB的面积为2,点A的坐标为. (1)求m和k的值. (2)若一次函数y=ax+3的图像经过点A,交双曲线的另一支于点C,交y轴于点D,求△AOC的面积. (3)在轴上是否存在点P,使得△PAC的面积为6?如果存在,请求出点P的坐标;若不存在,请说明理由.