如图,一块三角形铁皮,其中∠B=30°,∠C=45°,AC=12cm, 工人师傅利用这块铁皮做了一个侧面积最大的圆锥,求这个圆锥的底面直径.
煤炭是攀枝花的主要矿产资源之一,煤炭生产企业需要对煤炭运送到用煤单位所产生的费用进行核算并纳入企业生产计划.某煤矿现有1000吨煤炭要全部运往A.B两厂,通过了解获得A.B两厂的有关信息如下表(表中运费栏“元/t•km”表示:每吨煤炭运送一千米所需的费用):
(1)写出总运费y(元)与量x(t)之间函数关系式,写出自变量取值范围;(2)请你运用函数有关知识,为该煤矿设计总运费最少的运送方案,并求出最少的总运费(可用含a的代数式表示)
已知,如图,A,B分别在x轴和y轴上,且OA=2OB,直线y1=kx+b经过A点与抛物线y2=-x2+2x+3交于B,C两点,(1)试求k,b的值及C点坐标;(2)x取何值时y1,y2均随x的增大而增大;(3)x取何值时y1>y2.
如图,已知四边形ABCD是平行四边形.(1)求证:△MEF∽△MBA;(2)若AF、BE分别是∠DAB,∠CBA的平分线,求证:DF=EC.
两个反比例函数和在第一象限内的图象如图所示,点P在的图象上,PC⊥x轴于点C,交的图象于点A,PD⊥y轴于点D,交的图象于点B,当点P在的图象上运动时,以下结论:①△ODB与△OCA的面积相等;②四边形PAOB的面积不会发生变化;③PA与PB始终相等;④当点A是PC的中点时,点B一定是PD的中点.其中一定正确的结论有哪几个?对正确的结论要说明理由!
如图,在四边形ABCD中,AD∥BC,∠C=90°,BC=16,DC=12,AD=21.动点P从点D出发,沿线段DA的方向以每秒2个单位长的速度运动,动点Q从点C出发,在线段CB上以每秒1个单位长的速度向点B运动,点P,Q分别从点D,C同时出发,当点P运动到点A时,点Q随之停止运动.设运动的时间为t(秒).(1)当t=2时,求△BPQ的面积; (2)若四边形ABQP为平行四边形,求运动时间t.(3)当t为何值时,以B,P,Q三点为顶点的三角形是等腰三角形?