(本小题满分12分)如图椭圆:的两个焦点为、和顶点、构成面积为32的正方形.(1)求此时椭圆的方程;(2)设斜率为的直线与椭圆相交于不同的两点、、为的中点,且. 问:、两点能否关于直线对称. 若能,求出的取值范围;若不能,请说明理由.
在直四棱柱ABCD-A1B1C1D1中,AA1=2,底面是边长为1的正方形,E、F分别是棱B1B、DA的中点. (1)求二面角D1-AE-C的大小; (2)求证:直线BF∥平面AD1E.
在三棱锥SABC中,底面是边长为2的正三角形,点S在底面ABC上的射影O恰是AC的中点,侧棱SB和底面成45°角. (1)若D为侧棱SB上一点,当为何值时,CD⊥AB; (2)求二面角S-BC-A的余弦值大小.
如图所示,四棱锥PABCD中,PA⊥底面ABCD,BC=CD=2,AC=4,∠ACB=∠ACD=,F为PC的中点,AF⊥PB. (1)求PA的长; (2)求二面角B-AF-D的正弦值.
如图所示,直三棱柱ABCA1B1C1中,D、E分别是AB、BB1的中点,AA1=AC=CB=AB. (1)证明:BC1∥平面A1CD; (2)求二面角DA1CE的正弦值..
如图所示,在直三棱柱A1B1C1-ABC中,AB⊥AC,AB=AC=2,A1A=4,点D是BC的中点. (1)求异面直线A1B与C1D所成角的余弦值; (2)求平面ADC1与平面ABA1所成二面角的正弦值.