(本小题满分12分)如图椭圆:的两个焦点为、和顶点、构成面积为32的正方形.(1)求此时椭圆的方程;(2)设斜率为的直线与椭圆相交于不同的两点、、为的中点,且. 问:、两点能否关于直线对称. 若能,求出的取值范围;若不能,请说明理由.
已知椭圆经过点,为坐标原点,平行于的直线在轴上的截距为. (1)当时,判断直线与椭圆的位置关系(写出结论,不需证明); (2)当时,为椭圆上的动点,求点到直线距离的最小值; (3)如图,当交椭圆于、两个不同点时,求证:直线、与轴始终围成一个等腰三角形.
如图,平面,四边形是矩形,,与平面所成角是,点是的中点,点在矩形的边上移动. (1)证明:无论点在边的何处,都有; (2)当等于何值时,二面角的大小为.
(本小题满分14分)设椭圆方程(),为椭圆右焦点,为椭圆在短轴上的一个顶点,的面积为6,(为坐标原点); (1)求椭圆方程; (2)在椭圆上是否存在一点,使的中垂线过点?若存在,求出点坐标;若不存在,说明理由.
(本小题满分14分) 如图,正方体的棱长为,为的中点(1)求证://平面;(2)求点到平面的距离
(本小题满分12分)如图,设圆:,过原点作圆的任意弦,求所作弦的中点的轨迹方程.