(本小题12分)已知:以点C (t, )(t∈R , t ≠ 0)为圆心的圆与轴交于点O, A,与y轴交于点O, B,其中O为原点.(1)求证:△OAB的面积为定值;(2)设直线y = –2x+4与圆C交于点M, N,若,求圆C的方程.
在直角坐标系中,已知点,点P(x,y)在△ABC三边围成的区域(含边界)上. (1)若,求; (2)设=+(),用表示,并求的最大值.
已知函数(其中). (1)若为的极值点,求的值; (2)在(1)的条件下,解不等式.
在中,角所对的边分别为,且. (1)求的值; (2)若,求的面积.
已知函数,设命题:“的定义域为”; 命题:“的值域为” . (1)分别求命题、为真时实数的取值范围; (2)是的什么条件?请说明理由.
已知向量a=(cosx,-),b=(sinx,cos2x),x∈R,设函数f(x)=a·b. (1)求f(x)的最小正周期; (2)求f(x)在[0,]上的最大值和最小值.