(本小题满分12分)如图,已知圆C与y轴相切于点T(0,2),与x轴正半轴相交于两点M,N(点M必在点N的右侧),且已知椭圆D:的焦距等于,且过点( I ) 求圆C和椭圆D的方程;(Ⅱ) 若过点M斜率不为零的直线与椭圆D交于A、B两点,求证:直线NA与直线NB的倾角互补.
已知a,b,c分别为△ABC三个内角A,B,C的对边,a=bsinA-acosB. (1)求B; (2)若b=2,△ABC的面积为,求a,c.
已知椭圆:的一个顶点为,离心率为.直线与椭圆交于不同的两点M,N. (Ⅰ)求椭圆的方程; (Ⅱ)当△AMN得面积为时,求的值.
等比数列的各项均为正数,且 (1)求数列的通项公式; (2)设求数列的前n项和.
如图,在直三棱柱中,,分别是棱上的点(点不同于点),且为的中点. 求证:(1)平面平面; (2)直线平面.
设函数. (1)求f(x)的最小值,并求使f(x)取得最小值的x的集合; (2)在△ABC中,设角A,B的对边分别为a,b,若B=2A,且,求角C的大小.