已知,、分别是,的角平分线.(1)如图1,若,,则 ; (2)如图1,若,,能否求出的度数?若能,求出其值,若不能,试说明理由;(3) 如图2,若,,是否仍然能求出∠MON的度数,若能,求的度数(用含或的式子表示),并从你的求解过程中总结出你发现的规律 .
如图,△ABC内接于⊙O,AD⊥BC,OE⊥BC,OE=BC.(1)求∠BAC的度数.(2)将△ACD沿AC折叠为△ACF,将△ABD沿AB折叠为△ABG,延长FC和GB相交于点H.求证:四边形AFHG是正方形.(3)若BD=6,CD=4,求AD的长.
如图,三角形ABC内接于圆O,AB=8,AC=6,D是AB边上的一点,P是优弧BAC的中点,连结PA,PB,PC,PD.(1)当AD的长度为多少时三角形PAD是以AD为底边的等腰三角形?并证明.(2)在(1)的条件下,若cos∠PCB=,求PA的长.
一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字3、4、5、x.甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个小球上数字之和,记录后都将小球放回袋中搅匀,进行重复实验.实验数据如下表:解答下列问题:(1)如果实验继续进行下去,根据上表数据,出现“和为8”的频率将稳定在它的概率附近.估计出现“和为8”的概率是____________.(2)如果摸出的这两个小球上数字之和为9的概率是,那么x的值可以取7吗?请用列表法或画树状图法说明理由;如果x的值不可以取7,请写出一个符合要求的x值.
已知:如图,AB是⊙O的直径,点C.D为圆上两点,且,CF⊥AB于点F,CE⊥AD的延长线于点E.(1)试说明:DE=BF;(2)若∠DAB=60°,AB=8,求△ACD的面积.
某校260名学生参加植树活动,要求每人植4~7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵.将各类的人数绘制成扇形图(如图1)和条形图(如图2),经确认扇形图是正确的,而条形图尚有一处错误.回答下列问题:(1)写出条形图中存在的错误,并说明理由;(2)写出这20名学生每人植树量的众数、中位数;(3)在求这20名学生每人植树量的平均数时,小王是这样分析的:① 小王的分析是从哪一步开始出现错误的?② 请你帮他计算出正确的平均数,并估计这260名学生共植树多少棵.