在平面直角坐标系中,已知点A(-2,1),直线。(1)若直线过点A,且与直线垂直,求直线的方程;(2)若直线与直线平行,且在轴、轴上的截距之和为3,求直线的方程。
已知命题:存在使得成立,命题:对于任意,函数恒有意义.(1)若是真命题,求实数的取值范围;(2)若是假命题,求实数的取值范围.
如图,已知长方形的两条对角线的交点为,且与所在的直线方程分别为.(1)求所在的直线方程; (2)求出长方形的外接圆的方程.
已知函数,.(1)求函数的极值;(2)若恒成立,求实数的值;(3)设有两个极值点、(),求实数的取值范围,并证明.
已知点,直线,动点P到点F的距离与到直线的距离相等.(1)求动点P的轨迹C的方程;(2)直线与曲线C交于A,B两点,若曲线C上存在点D使得四边形FABD为平行四边形,求b的值.
如图1,直角梯形中,,分别为边和上的点,且,.将四边形沿折起成如图2的位置,使.(1)求证:平面;(2)求平面与平面所成锐角的余弦值.