(本小题12分)已知等10所高校举行的自主招生考试,某同学参加每所高校的考试获得通过的概率均为.(Ⅰ)如果该同学10所高校的考试都参加,试求恰有2所通过的概率;(Ⅱ)假设该同学参加每所高校考试所需的费用均为元,该同学决定按顺序参加考试,一旦通过某所高校的考试,就不再参加其它高校的考试,试求该同学参加考试所需费用的分布列及数学期望.
(本小题满分13分) 在平面直角坐标系中,为坐标原点,以为圆心的圆与直线相切. (Ⅰ)求圆的方程; (Ⅱ)若直线:与圆交于,两点,在圆上是否存在一点,使得,若存在,求出此时直线的斜率;若不存在,说明理由.
(本小题满分13分) 设等差数列的前项和为,且;数列的前项和为,且,. (Ⅰ)求数列,的通项公式; (Ⅱ)设, 求数列的前项和.
(本小题满分12分) 如图,在四棱锥中,底面是正方形,底面,,点是的中点,且交于点. (Ⅰ)求证:平面平面; (Ⅱ)求二面角的余弦值.
(本小题满分12分) 设:;:.若是的必要而不充分条件,求实数的取值范围.
(本小题满分12分) 函数部分图象如图所示. (Ⅰ)求的最小正周期及解析式; (Ⅱ)设,求函数在区间上的最大值和最小值.