(本小题12分)已知等10所高校举行的自主招生考试,某同学参加每所高校的考试获得通过的概率均为.(Ⅰ)如果该同学10所高校的考试都参加,试求恰有2所通过的概率;(Ⅱ)假设该同学参加每所高校考试所需的费用均为元,该同学决定按顺序参加考试,一旦通过某所高校的考试,就不再参加其它高校的考试,试求该同学参加考试所需费用的分布列及数学期望.
(本小题12分)如图,在海岸线一侧有一休闲游乐场,游乐场的前一部分边界为曲线段,该曲线段是函数,的图像,图像的最高点为.边界的中间部分为长千米的直线段,且.游乐场的后一部分边界是以为圆心的一段圆弧.(1)求曲线段的函数表达式;(2)曲线段上的入口距海岸线最近距离为千米,现准备从入口修一条笔直的景观路到,求景观路长;(3)如图,在扇形区域内建一个平行四边形休闲区,平行四边形的一边在海岸线上,一边在半径上,另外一个顶点在圆弧上,且,求平行四边形休闲区面积的最大值及此时的值.
(本小题10分)在中,分别是角的对边,,且.(Ⅰ)求的值及的面积;(Ⅱ)若,求角的大小.
(本小题12分)已知函数的图像经过点.(1)求的值;(2)在中,、、所对的边分别为、、,若,且.求.
(本小题12分)已知函数.(Ⅰ)求函数的单调递增区间及对称轴方程;(Ⅱ)当时,的最大值为,求实数的值.
(本小题10分)已知向量.(Ⅰ)若向量与平行,求的值; (Ⅱ)若向量与的夹角为锐角,求的取值范围