(本小题满分10分)已知直线l经过点P(,1),倾斜角,在极坐标系下,圆C的极坐标方程为。(1)写出直线l的参数方程,并把圆C的方程化为直角坐标方程;(2)设l与圆C相交于A,B两点,求点P到A,B两点的距离之积。
【选修4—2:矩阵与变换】(本小题满分10分) 已知矩阵M,若直线在矩阵M对应的变换作用下得到直线,求矩阵M的特征值.
【选修4—1几何证明选讲】(本小题满分10分) 如图,以的边为直径作圆,分别交于,过点作交于,且设交于点,求证:
(本小题满分16分)已知函数. (Ⅰ)当时,求的单调区间; (Ⅱ)求证:当时,对任意的都成立.
数列满足:. (Ⅰ)求证:数列一定不是等比数列; (Ⅱ)若,求最小值.
(本小题满分16分)在平面直角坐标系中,已知椭圆:的离心率,直线过椭圆的右焦点,且交椭圆于,两点. (Ⅰ)求椭圆的标准方程; (Ⅱ)过点作垂直于轴的直线,设直线与定直线交于点,试探索当变化时,直线是否过定点?