(本小题满分14分)如图所示,在一个特定时段内,以点E为中心的10海里以内海域被设为警戒水域.点E正北40海里处有一个雷达观测站A,某时刻测得一艘匀速直线行驶的船只位于点A北偏东30°且与点A相距100海里的位置B,经过2小时又测得该船已行驶到点A北偏东60°且与点A相距20海里的位置C. (1)求该船的行驶速度(单位:海里/小时);(2)若该船不改变航行方向继续行驶.判断它是否会进入警戒水域,并说明理由.
已知数列满足(为常数,). (Ⅰ)当时,求; (Ⅱ)当时,求的值; (Ⅲ)问:使恒成立的常数是否存在?并证明你的结论.
某机床厂2011年年初用98万元购进一台数控机床,并立即投入生产使用.计划第一年维修、保养费用12万元,从第二年开始,每年所需维修、保养费用比上一年增加4万元;该机床使用后,每年的总收入为50万元. 设使用年后数控机床的盈利额为万元. (Ⅰ)写出与之间的函数关系式; (Ⅱ)使用若干年后,对机床的处理方案有两种: 方案一:当年平均盈利额达到最大值时,以万元价格处理该机床; 方案二:当盈利额达到最大值时,以万元价格处理该机床; 请你研究一下哪种方案处理较为合理?并说明理由.
某商区停车场临时停车按时段收费,收费标准为:每辆汽车一次停车不超过小时收费元,超过小时的部分每小时收费元(不足小时的部分按小时计算).现有甲、乙二人在该商区临时停车,两人停车都不超过小时. (Ⅰ)设甲停车付费a元.依据题意,填写下表:
(Ⅱ)若每人停车的时长在每个时段的可能性相同,求甲、乙二人停车付费之和为元的概率; (Ⅲ)若甲停车小时以上且不超过小时的概率为,停车付费多于元的概率为,求甲停车付费恰为元的概率.
已知等差数列满足:,.的前n项和为. (Ⅰ)求及; (Ⅱ)令(),求数列的前n项和.
设△的内角所对的边为,且有. (Ⅰ)求角的大小; (Ⅱ)若,,为的中点,求的长.