(本小题满分14分)如图所示,在一个特定时段内,以点E为中心的10海里以内海域被设为警戒水域.点E正北40海里处有一个雷达观测站A,某时刻测得一艘匀速直线行驶的船只位于点A北偏东30°且与点A相距100海里的位置B,经过2小时又测得该船已行驶到点A北偏东60°且与点A相距20海里的位置C. (1)求该船的行驶速度(单位:海里/小时);(2)若该船不改变航行方向继续行驶.判断它是否会进入警戒水域,并说明理由.
如图,正三棱柱中,是的中点,. (Ⅰ)求证:平面; (Ⅱ)求二面角的平面角的余弦值.
已知单调递增的等比数列满足:,且是,的等差中项. (Ⅰ)求数列的通项公式; (Ⅱ)若,,求.
在锐角中,、、分别为角所对的边,且. (Ⅰ)确定角的大小; (Ⅱ)若=, 且的面积为 , 求的值.
已知函数(R,且)的部分图象如图所示. (1) 求的值; (2) 若方程在内有两个不同的解,求实数m的取值范围.
已知为锐角的三个内角,向量与共线. (1)求角的大小和求角的取值范围; (2)讨论函数的单调性并求其值域.