如图,已知AB是⊙O的直径,点P在BA的延长线上,弦CD⊥AB,垂足为E,且PC=PE·PO .(1)求证:PC是⊙O的切线;(2)若OE:EA=1:2,PA=6,求⊙O的半径;(3)在(2)问下,求的值。
在 Rt Δ ABC 中, ∠ ACB = 90 ° , AC = 12 .点 D 在直线 CB 上,以 CA , CD 为边作矩形 ACDE ,直线 AB 与直线 CE , DE 的交点分别为 F , G .
(1)如图,点 D 在线段 CB 上,四边形 ACDE 是正方形.
①若点 G 为 DE 的中点,求 FG 的长.
②若 DG = GF ,求 BC 的长.
(2)已知 BC = 9 ,是否存在点 D ,使得 ΔDFG 是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.
如图,四边形 ABCD 的四个顶点分别在反比例函数 y = m x 与 y = n x ( x > 0 , 0 < m < n ) 的图象上,对角线 BD / / y 轴,且 BD ⊥ AC 于点 P .已知点 B 的横坐标为4.
(1)当 m = 4 , n = 20 时.
①若点 P 的纵坐标为2,求直线 AB 的函数表达式.
②若点 P 是 BD 的中点,试判断四边形 ABCD 的形状,并说明理由.
(2)四边形 ABCD 能否成为正方形?若能,求此时 m , n 之间的数量关系;若不能,试说明理由.
如图,抛物线 y = a x 2 + bx ( a < 0 ) 过点 E ( 10 , 0 ) ,矩形 ABCD 的边 AB 在线段 OE 上(点 A 在点 B 的左边),点 C , D 在抛物线上.设 A ( t , 0 ) ,当 t = 2 时, AD = 4 .
(1)求抛物线的函数表达式.
(2)当 t 为何值时,矩形 ABCD 的周长有最大值?最大值是多少?
(3)保持 t = 2 时的矩形 ABCD 不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点 G , H ,且直线 GH 平分矩形的面积时,求抛物线平移的距离.
如图,在 Rt Δ ABC 中,点 O 在斜边 AB 上,以 O 为圆心, OB 为半径作圆,分别与 BC , AB 相交于点 D , E ,连接 AD .已知 ∠ CAD = ∠ B .
(1)求证: AD 是 ⊙ O 的切线.
(2)若 BC = 8 , tan B = 1 2 ,求 ⊙ O 的半径.
为了解朝阳社区 20 ~ 60 岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图.请根据图中信息解答下列问题:
(1)求参与问卷调查的总人数.
(2)补全条形统计图.
(3)该社区中 20 ~ 60 岁的居民约8000人,估算这些人中最喜欢微信支付方式的人数.