已知函数,且给定条件:“”。(1)求在给定条件下的最大值及最小值;(2)若又给条件,且是的充分不必要条件,求实数的取值范围。
某电视台组织部分记者,用“10分制”随机调查某社区居民的幸福指数.现从调查人群中随机抽取16名,如图所示的茎叶图记录了他们的幸福指数的得分(以小数点前的一位数字为茎,小数点后的一位数字为叶):(1)指出这组数据的众数和中位数;(2)若幸福指数不低于9.5分,则称该人的幸福指数为“极幸福”.求从这16人中随机选取3人,至多有1人是“极幸福”的概率;(3)以这16人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选3人,记表示抽到“极幸福”的人数,求的分布列及数学期望.
已知向量,函数.(1)求函数的最小正周期及单调递增区间;(2)已知中,角的对边分别为,若,,求的面积.
已知是公差不等于0的等差数列,是等比数列,且.(1)若,比较与的大小关系;(2)若.(ⅰ)判断是否为数列中的某一项,并请说明理由;(ⅱ)若是数列中的某一项,写出正整数的集合(不必说明理由).
已知椭圆经过点,一个焦点为.(1)求椭圆的方程;(2)若直线与轴交于点,与椭圆交于两点,线段的垂直平分线与轴交于点,求的取值范围.
设函数,,,记.(1)求曲线在处的切线方程;(2)求函数的单调区间;(3)当时,若函数没有零点,求的取值范围.