(本题12分)已知实数a,b,c,d满足a+b+c+d=3,a2+2b2+3c2+6d2=5,求证:(Ⅰ);(Ⅱ).
如图1,在三棱锥P-ABC中,PA⊥平面ABC,AC⊥BC,D为侧棱PC上一点,它的正(主)视图和侧(左)视图如图2所示.(1)证明:AD⊥平面PBC;(2)求三棱锥D-ABC的体积;(3)在∠ACB的平分线上确定一点Q,使得PQ∥平面ABD,并求此时PQ的长.
设直线与直线交于点.(1)当直线过点,且与直线垂直时,求直线的方程;(2)当直线过点,且坐标原点到直线的距离为时,求直线的方程.
如果实数满足求:(1)的最值;(2)的最大值.
已知全集,集合,集合;(1)求集合、; (2)求.
已知函数,在时取得极值.(Ⅰ)求函数的解析式;(Ⅱ)若时,恒成立,求实数m的取值范围;(Ⅲ)若,是否存在实数b,使得方程在区间上恰有两个相异实数根,若存在,求出b的范围,若不存在说明理由.