已知中心在原点,焦点在坐标轴上的椭圆,它的离心率为,一个焦点和抛物线的焦点重合,过直线上一点M引椭圆的两条切线,切点分别是A,B.(Ⅰ)求椭圆的方程;(Ⅱ)若在椭圆上的点处的椭圆的切线方程是. 求证:直线恒过定点;并出求定点的坐标.(Ⅲ)是否存在实数,使得恒成立?(点为直线恒过的定点)若存在,求出的值;若不存在,请说明理由。
已知圆及点.(1)在圆上,求线段的长及直线的斜率;(2)若为圆上任一点,求的最大值和最小值;(3)若实数满足,求的最大值和最小值.
已知动点M到点A(2,0)的距离是它到点B(8,0)的距离的一半,求:(1)动点M的轨迹方程;(2)若N为线段AM的中点,试求点N的轨迹.
已知圆x2+y2+x-6y+3=0与直线x+2y-3=0的两个交点为P、Q,求以PQ为直径的圆的方程.
求经过点A(2,-1),和直线相切,且圆心在直线上的圆的方程.
已知△ABC的三个项点坐标分别是A(4,1),B(6,-3),C(-3,0),求△ABC外接圆的方程.