直线与两坐标轴围成的三角形的面积为3,分别求满足下列条件的直线的方程.(1)过定点.(2)与直线垂直.
已知圆,问是否存在斜率为1的直线,使被圆C截得弦AB,以AB为直径的圆经过原点,若存在,写出直线的方程;若不存在,说明理由.
如图,圆与圆的半径都是1,=4,过动点P分别作圆、圆的切线PM、PN(M、N分别为切点),使得,试建立适当的坐标系,并求动点P的轨迹方程.
已知圆和直线交于P、Q两点且OP⊥OQ(O为坐标原点),求该圆的圆心坐标及半径
已知且,求使方程有解时的的取值范围。
建造一个容积为立方米,深为米的无盖长方体蓄水池,池壁的造价为每平方米元,池底的造价为每平方米元,把总造价(元)表示为底面一边长(米)的函数。