(本小题满分14分)已知函数处取得极值2。(Ⅰ)求函数的表达式;(Ⅱ)当满足什么条件时,函数在区间上单调递增?(Ⅲ)若为图象上任意一点,直线与的图象切于点P,求直线的斜率的取值范围
在锐角中,分别为角所对的边,且(Ⅰ)确定角的大小;(Ⅱ)若,且的面积为,求的值.
选修4-5:不等式选讲设函数.(Ⅰ)解不等式;(Ⅱ)若对一切实数均成立,求实数的取值范围.
选修4—4:坐标系与参数方程平面直角坐标系中,直线的参数方程是(为参数),以坐标原点为极点,轴的正半轴为极轴,建立极坐标系,已知曲线的极坐标方程为.(Ⅰ)求直线的极坐标方程;(Ⅱ)若直线与曲线相交于、两点,求.
选修4-1:几何证明选讲如图所示,为的直径,为的中点,为的中点.(Ⅰ)求证:;(Ⅱ)求证:.
已知函数.(Ⅰ)设是函数的极值点,求的值并讨论的单调性;(Ⅱ)当时,证明:.