(本小题满分12分)若二次函数满足,且函数的的一个零点为.(Ⅰ) 求函数的解析式;(Ⅱ)对任意的,恒成立,求实数的取值范围.
A , B , G , F 如图, A , B , C , D 四点在同一圆上, A D 的延长线与 B C 的延长线交于 E 点,且 E C = E D .
(I)证明: C D / / A B ; (II)延长 C D 到 F ,延长 D C 到 G ,使得 E F = E G ,证明:四点共圆.
在平面直角坐标系xoy中,已知曲线C1:x2+y2=1,以平面直角坐标系xoy的原点O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l:ρ(2cosθ-sinθ)=6.(Ⅰ)将曲线C1上的所有点的横坐标,纵坐标分别伸长为原来的、2倍后得到曲线C2,试写出直线l的直角坐标方程和曲线C2的参数方程.(Ⅱ)在曲线C2上求一点P,使点P到直线l的距离最大,并求出此最大值.
已知函数(Ⅰ)解不等式:;(Ⅱ)当时,恒成立,求实数的取值范围。
如图,直线经过⊙上的点,并且⊙交直线于,,连接.(I)求证:直线是⊙的切线;(II)若⊙的半径为,求的长.
设, .(1)当时,求曲线在处的切线方程;(2)如果存在,使得成立,求满足上述条件的最大整数;(3)如果对任意的,都有成立,求实数的取值范围.