(本小题满分12分)设和.
已知函数,(l)求函数的最小正周期;(2)当时,求函数f(x)的单调区间。
已知函数(1)若函数的图象切x轴于点(2,0),求a、b的值;(2)设函数的图象上任意一点的切线斜率为k,试求的充要条件;(3)若函数的图象上任意不同的两点的连线的斜率小于l,求证.
给定椭圆.称圆心在原点O,半径为的圆是椭圆C的“准圆”.若椭圆C的一个焦点为,其短轴上的一个端点到F的距离为.(1)求椭圆C的方程和其“准圆”方程;(2)点P是椭圆C的“准圆”上的一个动点,过动点P作直线,使得与椭圆C都只有一个交点,试判断是否垂直?并说明理由.
已知函数, 数列满足.(1)求数列的通项公式;(2)令,若对一切成立,求最小正整数m.
如图,已知正方体的棱长为2,E、F分别是、的中点,过、E、F作平面交于G.(l)求证:EG∥;(2)求二面角的余弦值;(3)求正方体被平面所截得的几何体的体积.