(本小题满分14分)一个几何体是由圆柱和三棱锥组合而成,点、、在圆的圆周上,其正(主)视图、侧(左)视图的面积分别为10和12,如图2所示,其中,,,.(1)求证:;(2)求三棱锥的体积.
已知函数. (1)若是函数的极值点,求曲线在点处的切线方程; (2)若函数在上为单调增函数,求的取值范围; (3)设为正实数,且,求证:.
已知椭圆的左,右两个顶点分别为、.曲线是以、两点为顶点,离心率为的双曲线.设点在第一象限且在曲线上,直线与椭圆相交于另一点. (1)求曲线的方程; (2)设、两点的横坐标分别为,,证明:.
如图,PDCE为矩形,ABCD为梯形,平面PDCE⊥平面ABCD,∠BAD=∠ADC=90°,AB=AD=CD=1,PD=. (1)若M为PA中点,求证:AC∥平面MDE; (2)求直线PA与平面PBC所成角的正弦值; (3)在线段PC上是否存在一点Q(除去端点),使得平面QAD与平面PBC所成锐二面角的大小为?
设椭圆的焦点在轴上. (1)若椭圆的焦距为1,求椭圆的方程; (2)设分别是椭圆的左、右焦点,为椭圆上的第一象限内的点,直线交轴与点,并且,证明:当变化时,点在某定直线上.
已知函数. (1)求函数的最小正周期; (2)已知中,角所对的边长分别为,若,,求的面积.