一玩具厂生产甲、乙两种玩具,已知造一个甲种玩具需用金属80克,塑料140克,造一个乙种玩具需用金属100克,塑料120克.若工厂有金属4600克,塑料6440克,计划用两种材料生产甲、乙两种玩具共50件,求甲种玩具件数的取值范围.
解方程(1)(配方法) (2)(公式法)
在平面直角坐标系xOy中,点、分别在轴、轴的正半轴上,且,点为线段的中点. (1)如图1,线段的长度为________________; (2)如图2,以为斜边作等腰直角三角形,当点在第一象限时,求直线所对应的函数的解析式; (3)如图3,设点、分别在轴、轴的负半轴上,且,以为边在第三象限内作正方形,请求出线段长度的最大值,并直接写出此时直线所对应的函数的解析式.
图2
已知在中,,,于,点在直线上,,点在线段上,是的中点,直线与直线交于点.(1)如图1,若点在线段上,请分别写出线段和之间的位置关系和数量关系:___________,___________;(2)在(1)的条件下,当点在线段上,且时,求证:;(3)当点在线段的延长线上时,在线段上是否存在点,使得.若存在,请直接写出的长度;若不存在,请说明理由.
已知关于的一元二次方程.(1)求证:此方程总有两个实数根;(2)若此方程的两个实数根都是整数,求的整数值;(3)若此方程的两个实数根分别为、,求代数式的值.
阅读下面的材料:小明在研究中心对称问题时发现:如图1,当点为旋转中心时,点绕着点旋转180°得到点,点再绕着点旋转180°得到点,这时点与点重合.如图2,当点、为旋转中心时,点绕着点旋转180°得到点,点绕着点旋转180°得到点,点绕着点旋转180°得到点,点绕着点旋转180°得到点,小明发现P、两点关于点中心对称.(1)请在图2中画出点、, 小明在证明P、两点关于点中心对称时,除了说明P、、三点共线之外,还需证明;(2)如图3,在平面直角坐标系xOy中,当、、为旋转中心时,点绕着点旋转180°得到点;点绕着点旋转180°得到点;点绕着点旋转180°得到点;点绕着点旋转180°得到点. 继续如此操作若干次得到点,则点的坐标为(),点的坐为.