(本小题满分14分)如图,四棱锥S-ABCD中,SA⊥平面ABCD,底面ABCD为直角梯形,AD∥BC,∠BAD=90 ,且BC=2AD=2,AB=4,SA=3.(1)求证:平面SBC⊥平面SAB;(2)若E、F分别为线段BC、SB上的一点(端点除外),满足.()①求证:对于任意的,恒有SC∥平面AEF;②是否存在,使得△AEF为直角三角形,若存在,求出所有符合条件的值;若不存在,说明理由.
某公司以每吨10万元的价格销售某种产品,每年可售出该产品1000吨,若将该产品每吨的价格上涨x%,则每年的销售数量将减少,该产品每吨的价格上涨百分之几,可使销售的总金额最大?
计算 (1) (2)
已知函数R). (1)若曲线在点处的切线与直线平行,求的值; (2)在(1)条件下,求函数的单调区间和极值; (3)当,且时,证明:
已知函数在与时都取得极值 (1)求的值与函数的单调区间 (2)若对,不等式恒成立,求的取值范围
已知某工厂生产件产品的成本为(元), 问:(1)要使平均成本最低,应生产多少件产品? (2)若产品以每件500元售出,要使利润最大,应生产多少件产品?