(本小题满分12分)下列三个图中,左边是一个正方体截去一个角后所得多面体的直观图。右边两个是正视图和侧视图.(1)请在正视图的下方,按照画三视图的要求画出该多面体的俯视图(不要求叙述作图过程);(2)求该多面体的体积(尺寸如图).
在△ABC中,为三个内角为三条边,且 (I)判断△ABC的形状; (II)若,求的取值范围.
已知函数。 (1)求函数在区间上最小值; (2)对(1)中的,若关于的方程有两个不同的实数解,求实数的取值范围; (3)若点A,B,C,从左到右依次是函数图象上三点,且这三点不共线,求证:是钝角三角形。
已知中心在原点,焦点在x轴上的椭圆离心率为,且经过点,过椭圆的左焦点作直线交椭圆于A、B两点,以OA、OB为邻边作平行四边形OAPB。 (1)求椭圆E的方程 (2)现将椭圆E上的点的纵坐标保持不变,横坐标变为原来的一半,求所得曲线的焦点坐标和离心率 (3)是否存在直线,使得四边形OAPB为矩形?若存在,求出直线的方程。若不存在,说明理由。
已知数列{}满足+=2n+1 (1)求出,,的值; (2)由(1)猜想出数列{}的通项公式; (3)用数学归纳法证明(2)的结果.
某公司为了加大产品的宣传力度,准备立一块广告牌,在其背面制作一个形如△ABC的支架,要求∠ACB=60°,BC的长度大于2米,且AC比AB长1米.为节省材料,要求AC的长度越短越好,求AC的最短长度,且当AC最短时,BC的长度为多少米?