已知椭圆的对称轴为坐标轴,焦点是,又点在椭圆上.(1)求椭圆的方程;(2)已知直线的斜率为,若直线与椭圆交于、两点,求面积的最大值.
(本小题满分12分)在甲、乙两个盒子中分别装有标号为1,2,3,4的四个球,现从甲、乙两个盒子中各取出1个球,每个球被取出的可能性相等.(Ⅰ)求取出的两个球上标号为相同数字的概率;(Ⅱ)求取出的两个球上标号之积能被3整除的概率.
(本小题满分12分)如图,在三棱锥P—ABC中,PC⊥底面ABC,AB⊥BC,D,E分别是AB,PB的中点.(Ⅰ)求证:DE∥平面PAC.(Ⅱ)求证:AB⊥PB;(Ⅲ)若PC=BC,求二面角P—AB—C的大小.
(本小题满分12分)已知函数()的最小正周期为.(Ⅰ)求的值;(Ⅱ)求函数在区间上的取值范围.
设函数(Ⅰ)当时,求函数的单调区间;(Ⅱ)令其图象上任意一点处切线的斜率恒成立,求实数的取值范围;(Ⅲ)当,时,方程在区间内有唯一实数解,求实数的取值范围.
定义在R上的奇函数有最小正周期4,且时,.(1)求在上的解析式;(2)判断在上的单调性,并给予证明;(3)当为何值时,关于方程在上有实数解?